Wednesday, June 3, 2020

06/03/2020 (2019: AMC 8, Problem 17)

Q: What is the value of the product

\[\left(\frac{1\cdot3}{2\cdot2}\right)\left(\frac{2\cdot4}{3\cdot3}\right)\left(\frac{3\cdot5}{4\cdot4}\right)\cdots\left(\frac{97\cdot99}{98\cdot98}\right)\left(\frac{98\cdot100}{99\cdot99}\right)?\]

$\textbf{(A) }\frac{1}{2}\qquad\textbf{(B) }\frac{50}{99}\qquad\textbf{(C) }\frac{9800}{9801}\qquad\textbf{(D) }\frac{100}{99}\qquad\textbf{(E) }50$

We will try to see how many numbers repeat in both the numerator and denominator, and cross them out. We find that the bottom right of a parenthesis corresponds with the top left of the next consecutive parenthesis. The top right of a parenthesis corresponds with the bottom left of the next consecutive parenthesis.
We cross out all the numbers except for the leftmost and rightmost numbers. We get: (1 * 100)/(2 * 99) = 50/99, so the answer is B.


No comments:

Post a Comment